Native-like Flow Properties of an Artificial Spider Silk Dope

نویسندگان

چکیده

Recombinant spider silk has emerged as a biomaterial that can circumvent problems associated with synthetic and naturally derived polymers, while still fulfilling the potential of native material. The artificial protein NT2RepCT be produced spun into fibers without use harsh chemicals here we evaluate key properties dope at native-like concentrations. We show recapitulates not only overall secondary structure content but also emulates its viscoelastic rheological properties. propose these are to biomimetic spinning optimization could facilitate successful dopes fibers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward spinning artificial spider silk.

Spider silk is strong and extensible but still biodegradable and well tolerated when implanted, making it the ultimate biomaterial. Shortcomings that arise in replicating spider silk are due to the use of recombinant spider silk proteins (spidroins) that lack native domains, the use of denaturing conditions under purification and spinning and the fact that the understanding of how spiders contr...

متن کامل

Engineering Properties of Spider Silk

Motivated by the high level of strength and toughness of spider silk and its multifunctional nature, this paper reports on the engineering properties of individual fibers from Nephila Clavipes spider drag line under uniaxial tension, transverse compression and torsional deformation. The tensile properties were compared to the Argiope Aurentia spider silk and show different ultimate strength but...

متن کامل

Recombinant Minimalist Spider Wrapping Silk Proteins Capable of Native-Like Fiber Formation

Spider silks are desirable biomaterials characterized by high tensile strength, elasticity, and biocompatibility. Spiders produce different types of silks for different uses, although dragline silks have been the predominant focus of previous studies. Spider wrapping silk, made of the aciniform protein (AcSp1), has high toughness because of its combination of high elasticity and tensile strengt...

متن کامل

Major Ampullate Spider Silk with Indistinguishable Spidroin Dope Conformations Leads to Different Fiber Molecular Structures

To plentifully benefit from its properties (mechanical, optical, biological) and its potential to manufacture green materials, the structure of spider silk has to be known accurately. To this aim, the major ampullate (MA) silk of Araneus diadematus (AD) and Nephila clavipes (NC) has been compared quantitatively in the liquid and fiber states using Raman spectromicroscopy. The data show that the...

متن کامل

Spider Silk

Some things about spider silk are difficult to understand.The genetic code for one of the more perplexing types of silk—the strands spiders use to weave their egg cases. Each case must be tough enough to keep out parasites, impermeable to rain and fungus, and breathable while insulating eggs from temperature extremes. These qualities alone would make an impressive fabric.The egg cases may even ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACS Biomaterials Science & Engineering

سال: 2021

ISSN: ['2373-9878']

DOI: https://doi.org/10.1021/acsbiomaterials.0c01308